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v Just as a mountaineer climbs a mountain – because it is there, so

a good mathematics student studies new material because

it is there. — JAMES B. BRISTOL v

7.1  Introduction

Differential Calculus is centred on the concept of the

derivative. The original motivation for the derivative was

the problem of defining tangent lines to the graphs of

functions and calculating the slope of such lines. Integral

Calculus is motivated by the problem of defining and

calculating the area of the region bounded by the graph of

the functions.

If a function f  is differentiable in an interval I, i.e., its

derivative f ′exists at each point of I, then a natural question

arises that given f ′at each point of I, can we determine

the function? The functions that could possibly have given

function as a derivative are called anti derivatives (or

primitive) of the function. Further, the formula that gives

all these anti derivatives is called the indefinite integral of the function and such

process of finding anti derivatives is called integration. Such type of problems arise in

many practical situations. For instance, if we know the instantaneous velocity of an

object at any instant, then there arises a natural question, i.e., can we determine the

position of the object at any instant? There are several such practical and theoretical

situations where the process of integration is involved. The development of integral

calculus arises out of the efforts of solving the problems of the following types:

(a) the problem of finding a function whenever its derivative is given,

(b) the problem of finding the area bounded by the graph of a function under certain
conditions.

These  two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
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There is a connection, known as the Fundamental Theorem of Calculus, between

indefinite integral and definite integral which makes the definite integral as a practical

tool for science and engineering. The definite integral is also used to solve many interesting

problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite

integrals and their elementary properties including some techniques of integration.

7.2  Integration as an Inverse Process of Differentiation

Integration is the inverse process of differentiation. Instead of differentiating a function,

we are given the derivative of a function and asked to find its primitive, i.e., the original

function. Such a process is called integration or anti differentiation.

Let us consider the following examples:

We know that (sin )
d

x
dx

 = cos x ... (1)

3

( )
3

d x

dx
 = x2 ... (2)

and ( )
xd

e
dx

= ex ... (3)

We observe that in (1), the function cos x is the derived function of sin x. We say

that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3), 

3

3

x
 and

ex are the anti derivatives (or integrals) of x2 and ex, respectively. Again, we note that

for any real number C, treated as constant function, its derivative is zero and hence, we

can write (1), (2) and (3) as follows :

(sin + C) cos=
d

x x
dx

, 
3

2
( + C)

3
=

d x
x

dx
and ( + C) =x xd

e e
dx

Thus, anti derivatives (or integrals) of the above cited functions are not unique.

Actually, there exist infinitely many anti derivatives of each of these functions which

can be obtained by choosing C arbitrarily from the set of real numbers. For this reason

C is customarily referred to as arbitrary constant. In fact, C is the parameter by

varying which one gets different anti derivatives (or integrals) of the given function.

More generally, if there is a function F such that F ( ) = ( )
d

x f x
dx

, ∀ x ∈ I (interval),

then for any arbitrary real number C, (also called constant of integration)

[ ]F ( ) + C
d

x
dx

 = f (x), x ∈ I
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Thus, {F + C, C ∈ R} denotes a family of anti derivatives of f.

Remark  Functions with same derivatives differ by a constant. To show this, let g and h

be two functions having the same derivatives on an interval I.

Consider the function f = g – h defined by f (x) = g (x) – h(x), ∀ x ∈ I

Then
df

dx
= f′ = g′  – h′ giving  f′ (x) = g′ (x) – h′ (x) ∀ x ∈ I

or f′ (x) = 0, ∀ x ∈ I by hypothesis,

i.e., the rate of change of f with respect to x is zero on I and hence f is constant.

In view of the above remark, it is justified to infer that the family {F + C, C ∈ R}

provides all possible anti derivatives of f.

We introduce a new symbol, namely, ( )f x dx∫  which will represent the entire

class of anti derivatives read as the indefinite integral of f with respect to x.

Symbolically, we write ( ) = F ( ) + Cf x dx x∫ .

Notation Given that  ( )
dy

f x
dx

= , we write y = ( )f x dx∫ .

For the sake of convenience, we mention below the following symbols/terms/phrases

with their meanings as given in the Table (7.1).

Table 7.1

Symbols/Terms/Phrases Meaning

( )f x dx∫ Integral of f with respect to x

f (x) in ( )f x dx∫ Integrand

x in  ( )f x dx∫ Variable of integration

Integrate Find the  integral

An integral of f A function F such that

F′(x) = f (x)

Integration The process of finding the integral

Constant of Integration Any real number C, considered as

constant function
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We already know the formulae for the derivatives of many important functions.

From these formulae, we can write down immediately the corresponding formulae

(referred to as standard formulae) for the integrals of these functions, as listed below

which will be used to find integrals of other functions.

Derivatives Integrals (Anti derivatives)

(i)

1

1

n
nd x

x
dx n

+ 
= 

+ 
 ;

1

C
1

n
n x

x dx
n

+

= +
+∫ , n ≠ –1

Particularly, we note that

( ) 1
d

x
dx

=  ;       Cdx x= +∫

(ii) ( )sin cos
d

x x
dx

=  ; cos sin Cx dx x= +∫

(iii) ( )– cos sin
d

x x
dx

=  ; sin cos Cx dx – x= +∫

(iv) ( ) 2tan sec
d

x x
dx

=  ;
2

sec tan Cx dx x= +∫

(v) ( ) 2
– cot cosec

d
x x

dx
=  ;

2
cosec cot Cx dx – x= +∫

(vi) ( )sec sec tan
d

x x x
dx

=  ; sec tan sec Cx x dx x= +∫

(vii) ( )– cosec cosec cot
d

x x x
dx

=  ; cosec cot – cosec Cx x dx x= +∫

(viii) ( )– 1

2

1
sin

1

d
x

dx – x
=

 ;
– 1

2
sin C

1

dx
x

– x
= +∫

(ix) ( )– 1

2

1
– cos

1

d
x

dx – x
=

 ;
– 1

2
cos C

1

dx
– x

– x
= +∫

(x) ( )– 1

2

1
tan

1

d
x

dx x
=

+  ;
– 1

2
tan C

1

dx
x

x
= +

+∫

(xi) ( )
x xd

e e
dx

=  ; C
x x

e dx e= +∫
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(xii) ( ) 1
log | |

d
x

dx x
= ;

1
log | | Cdx x

x
= +∫

(xiii)

x
xd a

a
dx log a

 
= 

 
 ; C

x
x a

a dx
log a

= +∫

ANote  In practice, we normally do not mention the interval over which the various

functions are defined. However, in any specific problem one has to keep it in mind.

7.2.1 Some properties of indefinite integral

In this sub section, we shall derive some properties of indefinite integrals.

(I) The process of differentiation and integration are inverses of each other in the

sense of the following results :

( )
d

f x dx
dx ∫  = f (x)

and ( )f x dx′∫  = f (x) + C, where C is any arbitrary constant.

Proof Let F be any anti derivative of f, i.e.,

F( )
d

x
dx

 = f (x)

Then ( )f x dx∫  = F(x) + C

Therefore ( )
d

f x dx
dx ∫  = ( )F ( ) + C

d
x

dx

= F ( ) = ( )
d

x f x
dx

Similarly, we note that

f ′(x) = ( )
d

f x
dx

and hence ( )f x dx′∫  = f (x) + C

where C is arbitrary constant called constant of integration.

(II) Two indefinite integrals with the same derivative lead to the same family of

curves and so they are equivalent.
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Proof Let f and g be two functions such that

( )
d

f x dx
dx ∫  = ( )

d
g x dx

dx ∫

or ( ) ( )
d

f x dx – g x dx
dx
 
 ∫ ∫  = 0

Hence ( ) ( )f x dx – g x dx∫ ∫ = C, where C is any real number   (Why?)

or ( )f x dx∫  = ( ) Cg x dx +∫

So the families of curves { }1 1( ) C , C Rf x dx + ∈∫

and { }2 2( ) C , C Rg x dx + ∈∫  are identical.

Hence, in this sense, ( ) and ( )f x dx g x dx∫ ∫  are equivalent.

A Note The equivalence of the families { }1 1( ) + C ,Cf x dx ∈∫ R  and

{ }2 2( ) + C ,Cg x dx ∈∫ R  is customarily expressed by writing ( ) = ( )f x dx g x dx∫ ∫ ,

without mentioning the parameter.

(III) [ ]( ) + ( ) ( ) + ( )f x g x dx f x dx g x dx=∫ ∫ ∫
Proof By Property (I), we have

[ ( ) + ( )]
d

f x g x dx
dx
 
 ∫  = f (x) + g (x) ... (1)

 On the otherhand, we find that

( ) + ( )
d

f x dx g x dx
dx

 
 ∫ ∫  = ( ) + ( )

d d
f x dx g x dx

dx dx∫ ∫

= f (x) + g (x) ... (2)

  Thus, in view of Property (II), it follows by (1) and (2)  that

( )( ) ( )f x g x dx+∫ = ( ) ( )f x dx g x dx+∫ ∫ .

(IV)  For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫
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Proof By the Property (I), ( ) ( )
d

k f x dx k f x
dx

=∫ .

Also ( )
d

k f x dx
dx

 
 ∫  =  ( ) = ( )

d
k f x dx k f x

dx ∫

 Therefore, using the Property (II), we have ( ) ( )k f x dx k f x dx=∫ ∫ .

(V) Properties (III) and (IV) can be generalised to a finite number of functions

f
1
, f

2
, ..., f

n
 and the real numbers, k

1
, k

2
, ..., k

n
 giving

[ ]1 1 2 2( ) ( ) ( )n nk f x k f x ... k f x dx+ + +∫

= 1 1 2 2( ) ( ) ( )n nk f x dx k f x dx ... k f x dx+ + +∫ ∫ ∫ .

To find an anti derivative of a given function, we search intuitively for a function

whose derivative is the given function. The search for the requisite function for finding

an anti derivative is known as integration by the method of inspection. We illustrate it

through some examples.

Example 1 Write an anti derivative for each of the following functions using the

method of inspection:

(i) cos 2x (ii) 3x2 + 4x3 (iii)
1

x
, x ≠ 0

Solution

(i) We look for a function whose derivative is cos 2x. Recall that

d

dx
 sin 2x = 2 cos 2x

or cos 2x = 
1

2

d

dx
 (sin 2x) =

1
sin 2

2

d
x

dx

 
 
 

Therefore, an anti derivative of cos 2x is 
1

sin 2
2

x .

(ii) We look for a function whose derivative is 3x2 + 4x3. Note that

( )3 4d
x x

dx
+ = 3x2 + 4x3.

Therefore, an anti derivative of 3x2 + 4x3  is  x3 + x4.
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(iii) We know that

1 1 1
(log ) 0 and [log ( )] ( 1) 0

d d
x , x – x – , x

dx x dx – x x
= > = = <

Combining above, we get ( ) 1
log 0

d
x , x

dx x
= ≠

Therefore, 
1

logdx x
x

=∫  is one of the anti derivatives of 
1

x
.

Example 2  Find the following integrals:

(i)

3

2

1x –
dx

x
∫ (ii)   

2

3( 1)x dx+∫ (iii)   ∫
3

2
1

( 2 – )+ 
x

x e dx
x

Solution

(i) We have

3
2

2

1 –x –
dx x dx – x dx

x
=∫ ∫ ∫ (by Property V)

= 

1 1 2 1

1 2C C
1 1 2 1

–
x x

–
–

+ +   
+ +   

+ +   
;  C

1
, C

2
 are constants of integration

= 

2 1

1 2C C
2 1

–
x x

– –
–

+  = 

2

1 2

1
+ C C

2

x
–

x
+

= 
2 1

+ C
2

x

x
+ , where C = C

1
 – C

2
 is another constant of integration.

ANote  From now onwards, we shall write only one constant of integration in the

final answer.

(ii) We have

2 2

3 3( 1)x dx x dx dx+ = +∫ ∫ ∫

=

2
1

3

C
2

1
3

x
x

+

+ +
+

 = 

5

3
3

C
5
x x+ +
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(iii) We have 

3 3

2 2
1 1

( 2 ) 2
x x

x e – dx x dx e dx – dx
x x

+ = +∫ ∫ ∫ ∫

=

3
1

2

2 – log + C
3

1
2

xx
e x

+

+
+

=

5

2
2

2 – log + C
5

x
x e x+

Example 3 Find the following integrals:

(i) (sin cos )x x dx+∫ (ii) cosec (cosec cot )x x x dx+∫

(iii) 2

1 sin

cos

– x
dx

x
∫

Solution

(i) We have

(sin cos ) sin cosx x dx x dx x dx+ = +∫ ∫ ∫
= – cos sin Cx x+ +

(ii) We have

2
(cosec (cosec + cot ) cosec cosec cotx x x dx x dx x x dx= +∫ ∫ ∫

= – cot cosec Cx – x +
(iii) We have

2 2 2

1 sin 1 sin

cos cos cos

– x x
dx dx – dx

x x x
=∫ ∫ ∫

= 
2

sec tan secx dx – x x dx∫ ∫
= tan sec Cx – x +

Example 4 Find the anti derivative F of  f defined by f (x) = 4x3 – 6, where F (0) = 3

Solution One anti derivative of f (x) is x4 – 6x since

4( 6 )
d

x – x
dx

 = 4x3 – 6

Therefore, the anti derivative F is given by

F(x) = x4 – 6x + C, where C is constant.
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Given that F(0) = 3, which gives,

3 = 0 – 6 × 0 + C    or    C = 3

Hence, the required anti derivative is the unique function F defined by

F(x) = x4 – 6x + 3.

Remarks

(i) We see that if F is an anti derivative of f, then so is F + C, where C is any

constant. Thus, if we know one anti derivative F of a function f, we can write

down an infinite number of anti derivatives of f by adding any constant to F

expressed by F(x)  + C, C ∈ R. In applications, it is often necessary to satisfy an

additional condition which then determines a specific value of C giving unique

anti derivative of the given function.

(ii) Sometimes, F is not expressible in terms of elementary functions viz., polynomial,

logarithmic, exponential, trigonometric functions and their inverses etc. We are

therefore blocked for finding ( )f x dx∫ . For example, it is not possible to find

2
– xe dx∫  by inspection since we can not find a function whose derivative is 

2– x
e

(iii) When the variable of integration is denoted by a variable other than x, the integral

formulae are modified accordingly. For instance

4 1
4 51

C C
4 1 5

y
y dy y

+

= + = +
+∫

EXERCISE 7.1

Find an anti derivative (or integral) of the following functions by the method of inspection.

1. sin 2x 2. cos 3x 3. e2x

4. (ax + b)2 5. sin 2x – 4 e3x

Find the following integrals in Exercises 6 to 20:

6.
3

(4 + 1) 
x

e dx∫ 7.
2

2

1
(1 – )x dx

x
∫ 8.

2
( )ax bx c dx+ +∫

9.
2

(2 )
x

x e dx+∫ 10.

2
1

x – dx
x

 
 
 
∫ 11.

3 2

2

5 4x x –
dx

x

+
∫

12.

3
3 4x x

dx
x

+ +
∫ 13.

3 2
1

1

x x x –
dx

x –

− +
∫ 14. (1 )– x x dx∫
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15.
2

( 3 2 3)x x x dx+ +∫ 16. (2 3cos )
x

x – x e dx+∫
17.

2
(2 3sin 5 )x – x x dx+∫ 18. sec (sec tan )x x x dx+∫

19.

2

2

sec

cosec

x
dx

x
∫ 20.

2

2 – 3sin

cos

x

x
∫ dx.

Choose the correct answer in Exercises 21 and 22.

21. The anti derivative of 
1

x
x

 
+ 

 
 equals

(A)

1 1

3 2
1

2 C
3

x x+ + (B)

2

23
2 1

C
3 2

x x+ +

(C)

3 1

2 2
2

2 C
3

x x+ + (D)

3 1

2 2
3 1

C
2 2

x x+ +

22. If 
3

4

3
( ) 4

d
f x x

dx x
= −  such that f (2) = 0. Then f (x) is

(A)
4

3

1 129

8
x

x
+ − (B)

3

4

1 129

8
x

x
+ +

(C)
4

3

1 129

8
x

x
+ + (D)

3

4

1 129

8
x

x
+ −

7.3  Methods of Integration

In previous section, we discussed integrals of those functions which were readily

obtainable from derivatives of some functions. It was based on inspection, i.e., on the

search of a function F whose derivative is f which led us to the integral of f. However,

this method, which depends on inspection, is not very suitable for many functions.

Hence, we need to develop additional techniques or methods for finding the integrals

by reducing them into standard forms. Prominent among them are methods based on:

1. Integration by Substitution

2. Integration using Partial Fractions

3. Integration by Parts

7.3.1 Integration by substitution

In this section, we consider the method of integration by substitution.

The given integral ( )f x dx∫  can be transformed into another form by changing

the independent variable x to t by substituting x = g (t).
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Consider I = ( )f x dx∫

Put x = g(t) so that 
dx

dt
 = g′(t).

We write dx = g′(t) dt

Thus I = ( ) ( ( )) ( )f x dx f g t g t dt= ′∫ ∫

This change of variable formula is one of the important tools available to us in the

name of integration by substitution. It is often important to guess what will be the useful

substitution. Usually, we make a substitution for a function whose derivative also occurs

in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. x:

(i) sin mx (ii) 2x sin (x2 + 1)

(iii)

4 2
tan secx x

x
(iv)

1

2

sin (tan )

1

– x

x+

Solution

(i) We know that derivative of mx is m. Thus, we make the substitution
mx = t so that mdx = dt.

Therefore,      
1

sin sinmx dx t dt
m

=∫ ∫  =  – 
1

m
cos t + C  = – 

1

m
cos mx + C

(ii) Derivative of x2 + 1 is 2x. Thus, we use the substitution x2 + 1 = t so that
2x dx = dt.

Therefore,  
2

2 sin ( 1) sinx x dx t dt+ =∫ ∫  =  – cos t + C  = – cos (x2 + 1) + C

(iii) Derivative of x  is 

1

2
1 1

2 2

–

x
x

= . Thus, we use the substitution

1
so that giving

2
x t dx dt

x
= =  dx = 2t dt.

Thus,

4 2 4 2tan sec 2 tan secx x t t t dt
dx

tx
=∫ ∫  = 

4 2
2 tan sect t dt∫

Again, we make another substitution tan t = u so that sec2 t dt = du
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Therefore,
4 2 4

2 tan sec 2t t dt u du=∫ ∫  = 

5

2 C
5

u
+

=
52

tan C
5

t +  (since u = tan t)

=
52

tan C (since )
5

x t x+ =

Hence,

4 2tan secx x
dx

x
∫  =

52
tan C

5
x +

Alternatively, make the substitution tan x t=

(iv) Derivative of  1

2

1
tan

1

– x
x

=
+

. Thus, we use the substitution

tan–1 x = t so that 
2

1

dx

x+
 = dt.

Therefore ,  

1

2

sin (tan )
sin

1

–
x

dx t dt
x

=
+∫ ∫  =  – cos t + C = – cos (tan –1x) + C

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

(i) ∫ tan = log sec + Cx dx x

We have

sin
tan

cos

x
x dx dx

x
=∫ ∫

Put  cos x = t so that sin x dx = – dt

Then tan log C log cos C
dt

x dx – – t – x
t

= = + = +∫ ∫

or tan log sec Cx dx x= +∫

(ii) ∫cot = log sin + Cx dx x

We have
cos

cot
sin

x
x dx dx

x
=∫ ∫
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Put  sin x = t so that cos x dx = dt

Then cot
dt

x dx
t

=∫ ∫  = log Ct +  = log sin Cx +

(iii) ∫sec = log sec + tan + Cx dx x x

We have

sec (sec tan )
sec

sec + tan

x x x
x dx dx

x x

+
=∫ ∫

Put sec x + tan x = t so that sec x (tan x + sec x) dx = dt

Therefore, sec log + C = log sec tan C
dt

x dx t x x
t

= = + +∫ ∫

(iv) ∫cosec = log cosec – cot + Cx dx x x

We have

cosec (cosec cot )
cosec

(cosec cot )

x x x
x dx dx

x x

+
=

+∫ ∫

Put cosec x + cot x = t so that – cosec x (cosec x + cot x) dx = dt

So cosec – – log | | – log |cosec cot | C
dt

x dx t x x
t

= = = + +∫ ∫

=

2 2cosec cot
– log C

cosec cot

x x

x x

−
+

−

= log cosec cot Cx – x +

Example 6  Find the following integrals:

(i)
3 2

sin cosx x dx∫ (ii)    
sin

sin ( )

x
dx

x a+∫     (iii)  
1

1 tan
dx

x+∫

Solution

(i) We have

3 2 2 2
sin cos sin cos (sin )x x dx x x x dx=∫ ∫

= 
2 2

(1 – cos ) cos (sin )x x x dx∫
Put t = cos x so that dt = – sin x dx
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Therefore,    
2 2

sin cos (sin )x x x dx∫  = 
2 2

(1 – )t t dt− ∫

= 

3 5
2 4

( – ) C
3 5

t t
– t t dt – –

 
= + 

 
∫

= 
3 51 1

cos cos C
3 5

– x x+ +

(ii) Put x + a = t. Then dx = dt. Therefore

sin sin ( )

sin ( ) sin

x t – a
dx dt

x a t
=

+∫ ∫

= 
sin cos cos sin

sin

t a – t a
dt

t∫

= cos – sin cota dt a t dt∫ ∫

= 1(cos ) (sin ) log sin Ca t – a t + 

= 1(cos ) ( ) (sin ) log sin ( ) Ca x a – a x a + + + 

= 1cos cos (sin ) log sin ( ) C sinx a a a – a x a – a+ +

Hence, 
sin

sin ( )

x
dx

x a+∫  = x cos a – sin a log |sin (x + a)| + C,

where,  C = – C
1
 sin a + a cos a, is another arbitrary constant.

(iii)
cos

1 tan cos sin

dx x dx

x x x
=

+ +∫ ∫

= 
1 (cos + sin + cos – sin )

2 cos sin

x x x x dx

x x+∫

= 
1 1 cos – sin

2 2 cos sin

x x
dx dx

x x
+

+∫ ∫

= 
1C 1 cos sin

2 2 2 cos sin

x x – x
dx

x x
+ +

+∫ ... (1)
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Now, consider 
cos sin

I
cos sin

x – x
dx

x x
=

+∫
Put cos x + sin x = t so that (cos x – sin x) dx = dt

Therefore       
2I log C

dt
t

t
= = +∫ = 2log cos sin Cx x+ +

Putting it in (1), we get

1 2C C1
+ + log cos sin

1 tan 2 2 2 2

dx x
x x

x
= + +

+∫

= 
1 2C C1

+ log cos sin
2 2 2 2

x
x x+ + +

= 
1 2C C1

+ log cos sin C C
2 2 2 2

x
x x ,

 
+ + = + 

 

EXERCISE 7.2

Integrate the functions in Exercises 1 to 37:

1. 2

2

1

x

x+
2.

( )2
log x

x
3.

1

logx x x+

4. sin sin (cos )x x 5. sin ( ) cos ( )ax b ax b+ +

6. ax b+ 7. 2x x + 8.
21 2x x+

9. 2
(4 2) 1x x x+ + + 10.

1

x – x
11.

4

x

x +
, x > 0

12.

1

3 53( 1)x – x 13.

2

3 3
(2 3 )

x

x+
14.

1

(log )mx x
, x > 0, 1≠m

15. 29 4

x

– x
16. 2 3x

e
+ 17. 2x

x

e

18.

1

2
1

–tan x
e

x+
19.

2

2

1

1

x

x

e –

e +
20.

2 2

2 2

x – x

x – x

e – e

e e+
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21. tan2 (2x – 3) 22. sec2 (7 – 4x) 23.

1

2

sin

1

– x

– x

24.
2cos 3sin

6cos 4sin

x – x

x x+ 25. 2 2

1

cos (1 tan )x – x
26.

cos x

x

27. sin 2 cos 2x x 28.
cos

1 sin

x

x+ 29. cot x log sin x

30.
sin

1 cos

x

x+ 31. ( )2

sin

1 cos

x

x+ 32.
1

1 cot x+

33.
1

1 tan– x
34.

tan

sin cos

x

x x
35.

( )2
1 log x

x

+

36.
( )2

( 1) logx x x

x

+ +
37.

( )3 1 4sin tan

1

–x x

x
8+

Choose the correct answer in Exercises 38 and 39.

38.
9

10

10 10 log 10

10

x
e

x

x dx

x

+

+∫  equals

(A) 10x – x10 + C (B) 10x + x10 + C

(C) (10x – x10)–1 + C (D) log (10x + x10) + C

39. 2 2
equals

sin cos

dx

x x
∫

(A) tan x + cot x + C (B)  tan x – cot x + C

(C) tan x cot x + C (D)  tan x – cot 2x + C

7.3.2  Integration using trigonometric identities

When the integrand involves some trigonometric functions, we use some known identities

to find the integral as illustrated through the following example.

Example 7 Find (i) 
2

cos x dx∫  (ii) sin 2 cos 3x x dx∫  (iii) 
3

sin x dx∫

Reprint 2025-26



242 MATHEMATICS

Solution

(i) Recall the identity cos 2x = 2 cos2 x – 1, which gives

cos2 x = 
1 cos 2

2

x+

Therefore,       = 
1

(1 + cos 2 )
2

x dx∫ = 
1 1

cos 2
2 2

dx x dx+∫ ∫

= 
1

sin 2 C
2 4

x
x+ +

(ii) Recall the identity sin x cos y = 
1

2
[sin (x + y) + sin (x – y)] (Why?)

Then    = 

= 
1 1

cos 5 cos C
2 5

– x x
 + +  

= 
1 1

cos 5 cos C
10 2

– x x+ +

(iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that

sin3 x = 
3sin sin 3

4

x – x

Therefore,      
3

sin x dx∫  = 
3 1

sin sin 3
4 4

x dx – x dx∫ ∫

                                      = 
3 1

– cos cos 3 C
4 12

x x+ +

Alternatively, 
3 2

sin sin sinx dx x x dx=∫ ∫  = 
2

(1 – cos ) sinx x dx∫
Put cos x = t so that – sin x dx = dt

Therefore,     
3

sin x dx∫  = ( )21 – t dt− ∫  = 

3
2

C
3

t
– dt t dt – t+ = + +∫ ∫

= 
31

cos cos C
3

– x x+ +

Remark It can be shown using trigonometric identities that both answers are equivalent.
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EXERCISE 7.3

Find the integrals of the functions in Exercises 1 to 22:

1. sin2 (2x + 5) 2. sin 3x cos 4x 3. cos 2x cos 4x cos 6x

4. sin3 (2x + 1) 5. sin3 x cos3 x 6. sin x sin 2x sin 3x

7. sin 4x sin 8x 8.
1 cos

1 cos

– x

x+
9.

cos

1 cos

x

x+

10. sin4 x 11. cos4 2x 12.
2sin

1 cos

x

x+

13.
cos 2 cos 2

cos cos

x –

x –

α
α

14.
cos sin

1 sin 2

x – x

x+
15. tan3 2x sec 2x

16. tan4x 17.

3 3

2 2

sin cos

sin cos

x x

x x

+
18.

2

2

cos 2 2sin

cos

x x

x

+

19. 3

1

sin cosx x
20.

( )2

cos 2

cos sin

x

x x+
21. sin – 1 (cos x)

22.
1

cos ( ) cos ( )x – a x – b

Choose the correct answer in Exercises 23 and 24.

23.

2 2

2 2

sin cos
is equal to

sin cos

x x
dx

x x

−
∫
(A) tan x + cot x + C (B) tan x + cosec x + C

(C) – tan x + cot x + C (D) tan x + sec x + C

24.
2

(1 )
equals

cos ( )

x

x

e x
dx

e x

+
∫
(A) – cot (exx) + C (B) tan (xex) + C

(C) tan (ex) + C (D) cot (ex) + C

7.4  Integrals of Some Particular Functions

In this section, we mention below some important formulae of integrals and apply them

for integrating many other related standard integrals:

(1) ∫ 2 2

1 –
= log + C

2 +–

dx x a

a x ax a
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(2) ∫ 2 2

1 +
= log + C

2 ––

dx a x

a a xa x

(3) ∫
– 1

2 2

1
tan C

dx x
= +

a ax + a

(4) ∫
2 2

2 2
= log + – + C

–

dx
x x a

x a

(5) ∫
– 1

2 2
= sin + C

–

dx x

aa x

(6) ∫
2 2

2 2
= log + + + C

+

dx
x x a

x a

We now prove the above results:

(1) We have  2 2

1 1

( ) ( )x – a x ax – a
=

+

= 
1 ( ) – ( ) 1 1 1

2 ( ) ( ) 2

x a x – a
–

a x – a x a a x – a x a

 +  =   + +  

Therefore,  2 2

1

2

dx dx dx
–

a x – a x ax – a

 
=  + 

∫ ∫ ∫

= [ ]1
log ( )| log ( )| C

2
| x – a – | x a

a
+ +

= 
1

log C
2

x – a

a x a
+

+

(2) In view of (1) above, we have

2 2

1 1 ( ) ( )

2 ( ) ( )–

a x a x

a a x a xa x

 + + −
=  + − 

 = 
1 1 1

2a a x a x

 + − + 
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      Therefore, 2 2
–

dx

a x
∫  = 

1

2

dx dx

a a x a x

 + − + 
∫ ∫

= 
1

[ log | | log | |] C
2

a x a x
a

− − + + +

= 
1

log C
2

a x

a a x

+
+

−

ANote  The technique used in (1) will be explained in Section 7.5.

(3) Put x = a tan θ. Then dx = a sec2 θ dθ.

Therefore,      2 2

dx

x a+∫  = 

=
11 1 1

θ θ C tan C
– x

d
a a a a

= + = +∫
(4) Let x = a secθ. Then dx = a secθ tan θ dθ.

Therefore,
2 2

dx

x a−
∫  =

2 2 2

secθ tanθ θ

sec θ

a d

a a−
∫

= 1secθ θ log secθ + tanθ + Cd =∫

=

2

12
log 1 C

x x
–

a a
+ +

=
2 2

1log log Cx x – a a+ − +

=
2 2log + Cx x – a+ , where C = C

1
 – log |a |

(5) Let x = a sinθ. Then dx = a cosθ dθ.

Therefore,  
2 2

dx

a x−
∫  =

2 2 2

θ θ

θ

cos

sin

a d

a – a
∫

=
1

θ = θ + C = sin C
– x

d
a

+∫
(6) Let x = a tan θ. Then dx = a sec2θ dθ.

Therefore,
2 2

dx

x a+
∫  =

2

2 2 2

θ θ

θ

sec

tan

a d

a a+
∫

  = 1θ θsecθ θ = log (sec tan ) Cd + +∫
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=

2

12
log 1 C

x x

a a
+ + +

=
2

1log log Cx x a | a |
2+ + − +

=
2log Cx x a2+ + + , where C = C

1
 – log |a|

Applying these standard formulae, we now obtain some more formulae which

are useful from applications point of view and can be applied directly to evaluate

other integrals.

(7) To find the integral 2

dx

ax bx c+ +∫ , we write

ax2 + bx + c = 

2 2
2

22 4

b c b c b
a x x a x –

a a a a a

     
+ + = + +          

Now, put 
2

b
x t

a
+ = so that dx = dt and writing 

2
2

2
4

c b
– k

a a
= ± . We find the

integral reduced to the form 2 2

1 dt

a t k±∫  depending upon the sign of 

2

2
4

c b
–

a a

 
 
 

and hence can be evaluated.

(8) To find the integral of the type , proceeding as in (7), we

obtain the integral using the standard formulae.

(9) To find the integral of the type 2

px q
dx

ax bx c

+

+ +∫ , where p, q, a, b, c are

constants, we are to find real numbers A, B such that

2+ = A ( ) + B = A (2 ) + B
d

px q ax bx c ax b
dx

+ + +

To determine A and B, we equate from both sides the coefficients of x and the

constant terms. A and B are thus obtained and hence the integral is reduced to

one of the known forms.
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(10) For the evaluation of the integral of the type 
2

( )px q dx

ax bx c

+

+ +
∫ , we proceed

as in (9) and transform the integral into known standard forms.

Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

(i) 2
16

dx

x −∫ (ii)
22

dx

x x−
∫

Solution

(i) We have 
2 2 2

16 4

dx dx

x x –
=

−∫ ∫  = 
4

log C
8 4

x –

x

1
+

+
[by 7.4 (1)]

(ii)

Put x – 1 = t. Then dx = dt.

Therefore,
22

dx

x x−
∫  =

21

dt

– t
∫  = 

1sin ( ) C– t + [by 7.4 (5)]

=
1sin ( – 1) C– x +

Example 9 Find the following integrals :

(i) 2
6 13

dx

x x− +∫ (ii) 2
3 13 10

dx

x x+ −∫ (iii) 25 2

dx

x x−
∫

Solution

(i) We have  x2 – 6x + 13 = x2 – 6x + 32 – 32 + 13 = (x – 3)2 + 4

So,
6 13

dx

x x
2 − +∫  =

( )2 2

1

3 2
dx

x – +
∫

Let x – 3 = t. Then dx = dt

Therefore,
6 13

dx

x x
2 − +∫  =  

1

2 2

1
tan C

2 22

–dt t

t
= +

+∫ [by 7.4 (3)]

=
11 3

tan C
2 2

– x –
+
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(ii) The given integral is of the form 7.4 (7). We write the denominator of the integrand,

2
3 13 10x x –+  =

2 13 10
3

3 3

x
x –
 + 
 

=

2 2
13 17

3
6 6

x –
    +    
     

(completing the square)

Thus
3 13 10

dx

x x
2 + −∫  = 2 2

1

3 13 17

6 6

dx

x
   + −   
   

∫

Put 
13

6
x t+ = . Then dx = dt.

Therefore,
3 13 10

dx

x x
2 + −∫  = 2

2

1

3 17

6

dt

t
 −  
 

∫

= 1

17

1 6log C
17 17

3 2
6 6

t –

t

+
× × +

[by 7.4 (i)]

= 1

13 17

1 6 6log C
13 1717

6 6

x –

x

+
+

+ +

= 1

1 6 4
log C

17 6 30

x

x

−
+

+

= 1

1 3 2 1 1
log C log

17 5 17 3

x

x

−
+ +

+

=
1 3 2

log C
17 5

x

x

−
+

+
, where C = 1

1 1
C log

17 3
+
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(iii) We have 
2 25 2

5
5

dx dx

xx x
x –

2
=

 −
 
 

∫ ∫

=
2 2

1

5 1 1

5 5

dx

x – –
   
   
   

∫  (completing the square)

Put 
1

5
x – t= . Then dx = dt.

Therefore,
5 2

dx

x x
2 −

∫  =
2

2

1

5 1

5

dt

t –
 
 
 

∫

=

2

21 1
log C

55
t t –

 + + 
 

[by 7.4 (4)]

=
21 1 2

log C
5 55

x
x – x –+ +

Example 10 Find the following integrals:

(i)
2

2 6 5

x
dx

x x
2

+

+ +∫ (ii) 2

3

5 4

x
dx

x – x

+

−
∫

Solution

(i) Using the formula 7.4 (9), we express

x + 2 = ( )2
A 2 6 5 B

d
x x

dx
+ + +  = A (4 6) Bx + +

Equating the coefficients of x and the constant terms from both sides, we get

4A = 1 and 6A + B = 2   or    A = 
1

4
 and B = 

1

2
.

Therefore,
2

2 6 5

x

x x
2

+

+ +∫  =
1 4 6 1

4 22 6 5 2 6 5

x dx
dx

x x x x
2 2

+
+

+ + + +∫ ∫

= 1 2

1 1
I I

4 2
+     (say) ... (1)
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In I
1
, put 2x2 + 6x + 5 = t, so that (4x + 6) dx = dt

Therefore, I
1
 = 1log C

dt
t

t
= +∫

=
2

1log | 2 6 5 | Cx x+ + +        ... (2)

and I
2
 = 2

2

1

522 6 5 3
2

dx dx

x x x x

=
+ + + +

∫ ∫

= 2 2

1

2 3 1

2 2

dx

x
   + +   
   

∫

Put 
3

2
x t+ = , so that dx = dt, we get

I
2
 = 2

2

1

2 1

2

dt

t
 +  
 

∫  = 
1

2

1
tan 2 C

1
2

2

–
t +

×
[by 7.4 (3)]

=
1

2

3
tan 2 + C

2

–
x
 + 
 

 = ( )1
2tan 2 3 + C– x + ... (3)

Using (2) and (3) in (1), we get

( )2 12 1 1
log 2 6 5 tan 2 3 C

4 22 6 5

–x
dx x x x

x x
2

+
= + + + + +

+ +∫

where, C = 1 2C C

4 2
+

(ii) This integral is of the form given in 7.4 (10). Let us express

x + 3 = 
2

A (5 4 ) + B
d

– x – x
dx

= A (– 4 – 2x) + B

Equating the coefficients of x and the constant terms from both sides, we get

– 2A = 1 and – 4 A + B = 3, i.e., A = 
1

2
–  and B = 1
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Therefore,
2

3

5 4

x
dx

x x

+

− −
∫  =

( )
2 2

4 21

2 5 4 5 4

– – x dx dx
–

x x x x
+

− − − −
∫ ∫

=
1

2
–  I

1
 + I

2
... (1)

In I
1
, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt.

Therefore, I
1
=  

( )
2

4 2

5 4

– x dx dt

tx x

−
=

− −
∫ ∫  = 12 Ct +

= 2
12 5 4 C– x – x + ... (2)

Now consider I
2
 =

2 2
5 4 9 ( 2)

dx dx

x x – x
=

− − +
∫ ∫

Put x + 2 = t, so that dx = dt.

Therefore, I
2
 =

1
2

2 2
sin + C

33

–dt t

t
=

−
∫ [by 7.4 (5)]

=
1

2

2
sin C

3

– x +
+ ... (3)

Substituting (2) and (3) in (1), we obtain

2 1

2

3 2
5 – 4 – + sin C

35 4

–x x
– x x

– x – x

+ +
= +∫ , where 1

2

C
C C

2
–=

EXERCISE 7.4

Integrate the functions in Exercises 1 to 23.

1.

2

6

3

1

x

x +
2.

2

1

1 4x+
3.

( )2

1

2 1– x +

4.
2

1

9 25– x
5. 4

3

1 2

x

x+
6.

2

61

x

x−

7. 2

1

1

x –

x –
8.

2

6 6

x

x a+
9.

2

2

sec

tan 4

x

x +
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10.
2

1

2 2x x+ +
11. 2

1

9 6 5x x+ +
12.

2

1

7 6– x – x

13.
( )( )

1

1 2x – x –
14.

2

1

8 3x – x+
15. ( )( )

1

x – a x – b

16.
2

4 1

2 3

x

x x –

+

+
17.

2

2

1

x

x –

+
18. 2

5 2

1 2 3

x

x x

−

+ +

19.
( )( )

6 7

5 4

x

x – x –

+
20.

2

2

4

x

x – x

+
21.

2

2

2 3

x

x x

+

+ +

22. 2

3

2 5

x

x – x

+

−
23. 2

5 3

4 10

x

x x

+

+ +
.

Choose the correct answer in Exercises 24 and 25.

24. 2
equals

2 2

dx

x x+ +∫
(A) x tan–1 (x + 1) + C (B) tan–1 (x + 1) + C

(C) (x + 1) tan–1x + C (D) tan–1x + C

25.
2

equals
9 4

dx

x x−
∫

(A) –11 9 8
sin C

9 8

x −  + 
 

(B) –11 8 9
sin C

2 9

x −  + 
 

(C) –11 9 8
sin C

3 8

x −  + 
 

(D)
–11 9 8

sin C
2 9

x −  + 
 

7.5  Integration by Partial Fractions

Recall that a rational function is defined as the ratio of two polynomials in the form

P( )

Q( )

x

x
, where P (x) and Q(x) are polynomials in x and Q(x) ≠ 0. If the degree of P(x)

is less than the degree of Q(x), then the rational function is called proper, otherwise, it

is called improper. The improper rational functions can be reduced to the proper rational
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functions by long division process. Thus, if 
P( )

Q( )

x

x
 is improper, then 1P ( )P( )

T( )
Q( ) Q( )

xx
x

x x
= + ,

where T(x) is a polynomial in x and 
1P ( )

Q( )

x

x
is a proper rational function. As we know

how to integrate polynomials, the integration of any rational function is reduced to the

integration of a proper rational function. The rational functions which we shall consider

here for integration purposes will be those whose denominators can be factorised into

linear and quadratic factors. Assume that we want to evaluate 
P( )

Q( )

x
dx

x∫ , where 
P( )

Q( )

x

x

is proper rational function. It is always possible to write the integrand as a sum of

simpler rational functions by a method called partial fraction decomposition. After this,

the integration can be carried out easily using the already known methods. The following

Table 7.2 indicates the types of simpler partial fractions that are to be associated with

various kind of rational functions.

Table 7.2

 S.No. Form of the rational function Form of the partial fraction

1.
( – ) ( – )

px q

x a x b

+
, a ≠ b

A B

x – a x – b
+

2.
2

( – )

px q

x a

+
( )2

A B

x – a x – a
+

3.

2

( – ) ( ) ( )

px qx r

x a x – b x – c

+ + A B C

x – a x – b x – c
+ +

4.
2

2
( – ) ( )

px qx r

x a x – b

+ +
2

A B C

( )x – a x – bx – a
+ +

5.

2

2
( – ) ( )

px qx r

x a x bx c

+ +

+ + 2

A B + Cx

x – a x bx c
+

+ +
,

where x2 + bx + c cannot be factorised further

In the above table, A, B and C are real numbers to be determined suitably.
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Example 11 Find 
( 1) ( 2)

dx

x x+ +∫

Solution The integrand is a proper rational function. Therefore, by using the form of

partial fraction [Table 7.2 (i)], we write

1

( 1) ( 2)x x+ +
 =

A B

1 2x x
+

+ +
... (1)

where, real numbers A and B are to be determined suitably. This gives

1 = A (x + 2) + B (x + 1).

Equating the coefficients of x and the constant term, we get

A + B = 0

and 2A + B = 1

Solving these equations, we get A =1 and B = – 1.

Thus, the integrand is given by

1

( 1) ( 2)x x+ +
 =

1 – 1

1 2x x
+

+ +

Therefore,
( 1) ( 2)

dx

x x+ +∫  =
1 2

dx dx
–

x x+ +∫ ∫

= log 1 log 2 Cx x+ − + +

=
1

log C
2

x

x

+
+

+

Remark The equation (1) above is an identity, i.e. a statement true for all (permissible)

values of x. Some authors use the symbol ‘≡’ to indicate that the statement is an

identity and use the symbol ‘=’ to indicate that the statement is an equation, i.e., to

indicate that the statement is true only for certain values of x.

Example 12 Find 

2

2

1

5 6

x
dx

x x

+

− +∫

Solution Here the integrand 

2

2

1

5 6

x

x – x

+

+
 is not proper rational function, so we divide

x2 + 1 by x2 – 5x + 6 and find that
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2

2

1

5 6

x

x – x

+

+
 = 2

5 5 5 5
1 1

( 2) ( 3)5 6

x – x –

x – x –x – x
+ = +

+

Let
5 5

( 2) ( 3)

x –

x – x –
 =

A B

2 3x – x –
+

So that 5x – 5 = A (x – 3) + B (x – 2)

Equating the coefficients of x and constant terms on both sides, we get A + B = 5
and 3A + 2B = 5. Solving these equations, we get A = – 5  and B = 10

Thus,

2

2

1

5 6

x

x – x

+

+
 =

5 10
1

2 3x – x –
− +

Therefore,

2

2

1

5 6

x
dx

x – x

+

+∫  =
1

5 10
2 3

dx
dx dx

x – x –
− +∫ ∫ ∫

= x – 5 log | x – 2 | + 10 log | x – 3 | + C.

Example 13 Find 2

3 2

( 1) ( 3)

x
dx

x x

−

+ +∫

Solution The integrand is of the type as given in Table 7.2 (4). We write

2

3 2

( 1) ( 3)

x –

x x+ +
 = 2

A B C

1 3( 1)x xx
+ +

+ ++

So that 3x – 2 = A (x + 1) (x + 3) + B (x + 3) + C (x + 1)2

= A (x2 + 4x + 3) + B (x + 3) + C (x2 + 2x + 1 )

Comparing coefficient of x2, x and constant term on both sides, we get
A + C = 0, 4A + B + 2C = 3 and 3A + 3B + C = – 2. Solving these equations, we get

11 5 11
A B and C

4 2 4

– –
,= = = . Thus the integrand is given by

2

3 2

( 1) ( 3)

x

x x

−

+ +  = 2

11 5 11

4 ( 1) 4 ( 3)2 ( 1)
– –

x xx+ ++

Therefore, 2

3 2

( 1) ( 3)

x

x x

−

+ +∫  = 2

11 5 11

4 1 2 4 3( 1)

dx dx dx
–

x xx
−

+ ++∫ ∫ ∫

=
11 5 11

log +1 log 3 C
4 2 ( +1) 4

x x
x

+ − + +

=
11 +1 5

log + C
4 + 3 2 ( + 1)

x

x x
+
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Example 14 Find 

2

2 2
( 1) ( 4)

x
dx

x x+ +∫

Solution  Consider 

2

2 2( 1) ( 4)

x

x x+ +
 and put x2 = y.

Then

2

2 2
( 1) ( 4)

x

x x+ +
 =

( 1) ( 4)

y

y y+ +

Write
( 1) ( 4)

y

y y+ +
 =

A B

1 4y y
+

+ +

So that y =  A (y + 4) + B (y + 1)

Comparing coefficients of y and constant terms on both sides, we get A + B = 1

and 4A + B = 0, which give

A =
1 4

and B
3 3

− =

Thus,

2

2 2
( 1) ( 4)

x

x x+ +
 = 2 2

1 4

3 ( 1) 3 ( 4)
–

x x
+

+ +

Therefore,

2

2 2( 1) ( 4)

x dx

x x+ +∫  =
2 2

1 4

3 31 4

dx dx
–

x x
+

+ +∫ ∫

=
1 11 4 1

tan tan C
3 3 2 2

– – x
– x + × +

=
1 11 2

tan tan C
3 3 2

– – x
– x + +

In the above example, the substitution was made only for the partial fraction part

and not for the integration part. Now, we consider an example, where the integration

involves a combination of the substitution method and the partial fraction method.

Example 15 Find 
( )

2

3 sin 2 cos

5 cos 4 sin

–
d

– –

φ φ
φ

φ φ∫

Solution Let y = sinφ

Then dy = cosφ dφ
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Therefore,
( )

2

3 sin 2 cos

5 cos 4 sin

–
d

– –

φ φ
φ

φ φ∫  = 2

(3 – 2)

5 (1 ) 4

y dy

– – y – y
∫

= 2

3 2

4 4

y –
dy

y – y +∫

= ( )2

3 2
I (say)

2

y –

y –
=∫

Now, we write
( )2

3 2

2

y –

y –
 = 2

A B

2 ( 2)y y
+

− −
[by Table 7.2 (2)]

Therefore, 3y – 2 = A (y – 2) + B

Comparing the coefficients of y and constant term, we get A = 3 and B – 2A = – 2,

which gives A = 3 and B = 4.

Therefore, the required integral is given by

I = 2

3 4
[ + ]

2 ( 2)
dy

y – y –
∫  = 2

3 + 4
2 ( 2)

dy dy

y – y –
∫ ∫

=
1

3 log 2 4 C
2

y –
y

 
− + + − 

=
4

3 log sin 2 C
2 sin–

φ − + +
φ

=
4

3 log (2 sin ) + C
2 sin

− φ +
− φ

 (since, 2 – sinφ is always positive)

Example 16 Find 

2

2

1

( 2) ( 1)

x x dx

x x

+ +

+ +∫

Solution The integrand is a proper rational function. Decompose the rational function

into partial fraction [Table 2.2(5)]. Write

2

2

1

( 1) ( 2)

x x

x x

+ +

+ +
 = 2

A B + C

2 ( 1)

x

x x
+

+ +

Therefore, x2 + x + 1 = A (x2 + 1) + (Bx + C) (x + 2)
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Equating the coefficients of x2, x and of constant term of both sides, we get

A + B =1, 2B + C = 1 and A + 2C = 1. Solving these equations, we get

3 2 1
A , B and C

5 5 5
= = =

Thus, the integrand is given by

2

2

1

( 1) ( 2)

x x

x x

+ +

+ +
 = 2

2 1
3 5 5

5 ( 2) 1

x

x x

+
+

+ +
 = 

2

3 1 2 1

5 ( 2) 5 1

x

x x

+ +  + + 

Therefore,

2

2

1

( +1) ( 2)

x x
dx

x x

+ +

+∫  = 2 2

3 1 2 1 1

5 2 5 51 1

dx x
dx dx

x x x
+ +

+ + +∫ ∫ ∫

=
2 13 1 1

log 2 log 1 tan C
5 5 5

–
x x x+ + + + +

EXERCISE 7.5

Integrate the rational functions in Exercises 1 to 21.

1.
( 1) ( 2)

x

x x+ +
2. 2

1

9x –
3.

3 1

( 1) ( 2) ( 3)

x –

x – x – x –

4.
( 1) ( 2) ( 3)

x

x – x – x –
5. 2

2

3 2

x

x x+ +
6.

2
1

(1 2 )

– x

x – x

7. 2
( 1) ( – 1)

x

x x+
8. 2

( 1) ( 2)

x

x – x +
9. 3 2

3 5

1

x

x – x x

+

− +

10. 2

2 3

( 1) (2 3)

x

x – x

−

+
11. 2

5

( 1) ( 4)

x

x x+ −
12.

3

2

1

1

x x

x

+ +

−

13. 2

2

(1 ) (1 )x x− + 14. 2

3 1

( 2)

x –

x + 15. 4

1

1x −

16.
1

( 1)
n

x x +  [Hint:  multiply numerator and denominator by x n – 1 and put xn = t ]

17.
cos

(1 – sin ) (2 – sin )

x

x x
[Hint : Put sin x = t]
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18.

2 2

2 2

( 1) ( 2)

( 3) ( 4)

x x

x x

+ +

+ +
19. 2 2

2

( 1) ( 3)

x

x x+ +
20. 4

1

( 1)x x –

21.
1

( 1)
x

e –
[Hint : Put ex = t]

Choose the correct answer in each of the Exercises 22 and 23.

22.
( 1) ( 2)

x dx

x x− −∫  equals

(A)

2( 1)
log C

2

x

x

−
+

−
(B)

2( 2)
log C

1

x

x

−
+

−

(C)

2
1

log C
2

x

x

−  + 
− 

(D) log ( 1) ( 2) Cx x− − +

23.
2( 1)

dx

x x +∫ equals

(A)
21

log log ( +1) + C
2

x x− (B)
21

log log ( +1) + C
2

x x+

(C) 21
log log ( +1) + C

2
x x− + (D)

21
log log ( +1) + C

2
x x+

7.6  Integration by Parts

In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.

If u and v are any two differentiable functions of a single variable x (say). Then, by
the product rule of differentiation, we have

( )
d

uv
dx

 =
dv du

u v
dx dx

+

Integrating both sides, we get

uv =
dv du

u dx v dx
dx dx

+∫ ∫

or
dv

u dx
dx∫  =

du
uv – v dx

dx∫ ... (1)

Let u = f (x) and 
dv

dx
= g(x). Then

du

dx
= f ′(x) and v = ( )g x dx∫
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Therefore, expression (1) can be rewritten as

( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ] ( )f x g x dx – g x dx f x dx′∫ ∫ ∫

i.e., ( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ( ) ]f x g x dx – f x g x dx dx′∫ ∫ ∫
If we take f as the first function and g as the second function, then this formula

may be stated as follows:

“The integral of the product of two functions = (first function) × (integral

of the second function) – Integral of [(differential coefficient of the first function)

× (integral of the second function)]”

Example 17 Find cosx x dx∫
Solution Put f (x) = x (first function) and g (x) = cos x (second function).

Then, integration by parts gives

cosx x dx∫  = cos [ ( ) cos ]
d

x x dx – x x dx dx
dx∫ ∫ ∫

= sin sinx x – x dx∫  = x sin x + cos x + C

Suppose, we take f (x) = cos x and g (x) = x. Then

cosx x dx∫  = cos [ (cos ) ]
d

x x dx – x x dx dx
dx∫ ∫ ∫

= ( )
2 2

cos sin
2 2

x x
x x dx+ ∫

Thus, it shows that the integral cosx x dx∫  is reduced to the comparatively more

complicated integral having more power of x. Therefore, the proper choice of the first

function and the second function is significant.

Remarks

(i) It is worth mentioning that integration by parts is not applicable to product of

functions in all cases. For instance, the method does not work for sinx x dx∫ .

The reason is that there does not exist any function whose derivative is

x  sin x.

(ii) Observe that while finding the integral of the second function, we did not add

any constant of integration. If we write the integral of the second function cos x
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as sin x + k, where k is any constant, then

cosx x dx∫  = (sin ) (sin )x x k x k dx+ − +∫
= (sin ) (sinx x k x dx k dx+ − −∫ ∫
= (sin ) cos Cx x k x – kx+ − +  = sin cos Cx x x+ +

This shows that adding a constant to the integral of the second function is

superfluous so far as the final result is concerned while applying the method of

integration by parts.

(iii) Usually, if any function is a power of x or a polynomial in x, then we take it as the

first function. However, in cases where other function is inverse trigonometric

function or logarithmic function, then we take them as first function.

Example 18 Find log x dx∫
Solution To start with, we are unable to guess a function whose derivative is log x. We

take log x as the first function and the constant function 1 as the second function. Then,

the integral of the second function is x.

Hence, (log .1)x dx∫  = log 1 [ (log ) 1 ]
d

x dx x dx dx
dx

−∫ ∫ ∫

=
1

(log ) – log Cx x x dx x x – x
x

⋅ = +∫ .

Example 19 Find 
x

x e dx∫
Solution Take first function as x and second function as ex. The integral of the second

function is ex.

Therefore,
x

x e dx∫  = 1
x x

x e e dx− ⋅∫  = xex – ex + C.

Example 20 Find 

1

2

sin

1

–
x x

dx
x−

∫

Solution Let first function be sin – 1x and second function be 
21

x

x−
.

First we find the integral of the second function, i.e., 
21

x dx

x−
∫ .

Put t =1 – x2. Then dt = – 2x dx
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Therefore,
2

1

x dx

x−
∫  =

1

2

dt
–

t
∫  = 

2
– 1t x= − −

Hence,

1

2

sin

1

–x x
dx

x−
∫  = ( )1 2 2

2

1
(sin ) 1 ( 1 )

1

–
x – x – x dx

x
− − −

−
∫

=
2 11 sin C– x x x

−− + +  = 
2 1

1 sin Cx – x x
−− +

Alternatively, this integral can also be worked out by making substitution sin–1 x  = θ and

then integrating by parts.

Example 21  Find sin
x

e x dx∫

Solution  Take ex as the first function and sin x as second function. Then, integrating

by parts, we have

I sin ( cos ) cos
x x x

e x dx e – x e x dx= = +∫ ∫
= – ex cos x + I

1
 (say) ... (1)

Taking ex

 
and cos x as the first and second functions, respectively, in I

1
, we get

I
1
 = sin sin

x x
e x – e x dx∫

Substituting the value of I
1
 in (1), we get

I = – ex cos x + ex sin x – I  or  2I = ex (sin x – cos x)

Hence, I = sin (sin cos ) + C
2

x
x e

e x dx x – x=∫
Alternatively, above integral can also be determined by taking sin x as the first function

and ex the second function.

7.6.1 Integral of the type [ ( ) + ( )]
x

e f x f x dx′∫

We have I = [ ( ) + ( )]
x

e f x f x dx′∫  = ( ) + ( )
x x

e f x dx e f x dx′∫ ∫

= 1 1I ( ) , where I = ( )
x x

e f x dx e f x dx′+ ∫ ∫ ... (1)

Taking f (x) and ex as the first function and second function, respectively, in I
1
 and

integrating it by parts, we have I
1
 = f (x) ex – ( ) C

x
f x e dx′ +∫

Substituting I
1
 in (1), we get

I = ( ) ( ) ( ) C
x x x

e f x f x e dx e f x dx′ ′− + +∫ ∫  = ex f (x) + C
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Thus, ′∫ [ ( ) ( )]
x

e  f x + f x dx  = ( ) Cxe f x +

Example 22 Find (i) 1

2

1
(tan )

1

x –
e x

x
+

+∫ dx   (ii) 
2

2

( +1)

( +1)

xx e

x
∫  dx

Solution

(i) We have I =
1

2

1
(tan )

1

x –
e x dx

x
+

+∫

Consider f (x) = tan– 1x, then  f ′(x) = 2

1

1 x+
Thus, the given integrand is of the form ex [ f (x) + f ′(x)].

Therefore, 
1

2

1
I (tan )

1

x –
e x dx

x
= +

+∫  = ex tan– 1x + C

(ii) We have 
2

2

( + 1)
I

( +1)

xx e

x
= ∫ dx

2

2

1 +1+1)
[ ]

( +1)

x x –
e dx

x
= ∫

2

2 2

1 2
[ ]

( + 1) ( +1)

x x –
e dx

x x
= +∫  2

1 2
[ + ]

+1 ( +1)

x x –
e dx

x x
= ∫

Consider 
1

( )
1

x
f x

x

−
=

+
, then  2

2
( )

( 1)
f x

x
′ =

+

Thus, the given integrand is of the form ex [f (x) + f ′(x)].

Therefore,
2

2

1 1
C

1( 1)

x xx x
e dx e

xx

+ −
= +

++∫

EXERCISE 7.6

Integrate the functions in Exercises 1 to 22.

1. x sin x 2. x sin 3x 3. x2 ex 4. x log x

5. x log 2x 6. x2 log x 7. x sin– 1x 8. x tan–1 x

9. x cos–1 x 10. (sin–1x)2 11.

1

2

cos

1

x x

x

−

−
12. x sec2 x

13. tan–1x 14. x (log x)2 15. (x2 + 1) log x
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16. ex (sinx + cosx) 17. 2(1 )

x
x e

x+
18.

1 sin

1 cos

x x
e

x

 +
 + 

19. 2

1 1
–

x
e

x x

 
 
 

20. 3

( 3)

( 1)

x
x e

x

−

−
21. e2x sin x

22.
1

2

2
sin

1

– x

x

 
 + 

Choose the correct answer in Exercises 23 and 24.

23.
32 xx e dx∫  equals

(A)
31

C
3

x
e + (B)

21
C

3

x
e +

(C)
31

C
2

xe + (D)
21

C
2

x
e +

24. sec (1 tan )
x

e x x dx+∫  equals

(A) ex cos x + C (B) ex sec x + C

(C) ex sin x + C (D) ex tan x + C

7.6.2 Integrals of some more types

Here, we discuss some special types of standard integrals based on the technique of

integration  by parts :

(i) 2 2
x a dx−∫ (ii) 2 2

x a dx+∫ (iii) 2 2
a x dx−∫

(i)  Let 
2 2I x a dx= −∫

Taking constant function 1 as the second function and integrating by parts, we

have

I =
2 2

2 2

1 2

2

x
x x a x dx

x a
− −

−
∫

=

2
2 2

2 2

x
x x a dx

x a
− −

−
∫  = 

2 2 2
2 2

2 2

x a a
x x a dx

x a

− +
− −

−
∫
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=
2 2 2 2 2

2 2

dx
x x a x a dx a

x a
− − − −

−
∫ ∫

=
2 2 2

2 2
I

dx
x x a a

x a
− − −

−
∫

or 2I =
2 2 2

2 2

dx
x x a a

x a
− −

−
∫

or I = ∫
2 2

x – a dx = 

2
2 2 2 2

– – log + – + C
2 2

x a
x a x x a

Similarly, integrating other two integrals by parts, taking constant function 1 as the

second function, we get

(ii) ∫
2

2 2 2 2 2 21
+ = + + log + + + C

2 2

a
x a dx x x a x x a

(iii)

Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric

substitution x = a secθ in (i), x = a tanθ in (ii) and x = a sinθ in (iii) respectively.

Example 23 Find 
2

2 5x x dx+ +∫
Solution Note that

2 2 5x x dx+ +∫  =
2( 1) 4x dx+ +∫

Put  x + 1 = y, so that dx = dy. Then

2
2 5x x dx+ +∫  =

2 2
2y dy+∫

=
2 21 4

4 log 4 C
2 2

y y y y+ + + + +         [using 7.6.2 (ii)]

=
2 21

( 1) 2 5 2 log 1 2 5 C
2

x x x x x x+ + + + + + + + +

Example 24 Find 
2

3 2x x dx− −∫

Solution Note that 
2 23 2 4 ( 1)x x dx x dx− − = − +∫ ∫
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Put x + 1 = y so that dx = dy.

Thus
2

3 2x x dx− −∫  =
2

4 y dy−∫

=
2 11 4

4 sin C
2 2 2

– y
y y− + + [using 7.6.2 (iii)]

=
2 11 1

( 1) 3 2 2 sin C
2 2

– x
x x x

+ + − − + + 
 

EXERCISE 7.7

Integrate the functions in Exercises 1 to 9.

1. 2
4 x− 2. 2

1 4x− 3. 2
4 6x x+ +

4. 2
4 1x x+ + 5. 2

1 4x x− − 6. 2
4 5x x+ −

7. 2
1 3x x+ − 8. 2

3x x+ 9.

2

1
9

x
+

Choose the correct answer in Exercises 10 to 11.

10. 21 x dx+∫ is equal to

(A) ( )2 21
1 log 1 C

2 2

x
x x x+ + + + +

(B)

3

2 2
2

(1 ) C
3

x+ + (C)

3

2 2
2

(1 ) C
3

x x+ +

(D)

2
2 2 21

1 log 1 C
2 2

x
x x x x+ + + + +

11.
2 8 7x x dx− +∫  is equal to

(A)
2 21

( 4) 8 7 9log 4 8 7 C
2

x x x x x x− − + + − + − + +

(B)
2 21

( 4) 8 7 9log 4 8 7 C
2

x x x x x x+ − + + + + − + +

(C)
2 21

( 4) 8 7 3 2 log 4 8 7 C
2

x x x x x x− − + − − + − + +

(D)
2 21 9

( 4) 8 7 log 4 8 7 C
2 2

x x x x x x− − + − − + − + +
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7.7   Definite Integral

In the previous sections, we have studied about the indefinite integrals and discussed

few methods of finding them including integrals of some special functions. In this

section, we shall study what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by ( )
b

a
f x dx∫ , where a is called the

lower limit of the integral and b is called the upper limit of the integral. The definite

integral is introduced either as the limit of a sum or if it has an anti derivative F in the

interval [a, b], then its value is the difference  between the values of F at the end

points, i.e., F(b) – F(a).

7.8  Fundamental Theorem of Calculus

7.8.1  Area function

We have defined ( )
b

a
f x dx∫  as the area of

the region bounded by the curve y = f (x),

the ordinates x = a and x = b and x-axis. Let x

be a given point in [a, b]. Then ( )
x

a
f x dx∫

represents the area of the light shaded region

in Fig 7.1 [Here it is assumed that f (x) > 0 for

x ∈ [a, b], the assertion made below is

equally true for other functions as well].

The area of this shaded region depends upon

the value of x.

In other words, the area of this shaded region is a function of x. We denote this

function of x by A(x). We call the function A(x) as Area function and is given by

A (x) = ∫ ( )
x

a
f x dx ... (1)

Based on this definition, the two basic fundamental theorems have been given.

However, we only state them as their proofs are beyond the scope of this text book.

7.8.2  First fundamental theorem of integral calculus

Theorem 1 Let f be a continuous function on the closed interval [a, b] and let A (x) be

the area function. Then A′′′′′(x) = f (x), for all x ∈∈∈∈∈ [a, b].

Fig 7.1
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7.8.3  Second fundamental theorem of integral calculus

We state below an important theorem which enables us to evaluate definite integrals

by making use of anti derivative.

Theorem 2 Let f  be continuous function defined on the closed interval [a, b] and F be

an anti derivative of f. Then ∫ ( )
b

a
f x dx = [F( )] =b

ax  F (b) – F(a).

Remarks

(i) In words, the Theorem 2 tells us that ( )
b

a
f x dx∫ = (value of the anti derivative F

of f at the upper limit b – value of the same anti derivative at the lower limit a).

(ii) This theorem is very useful, because it gives us a method of calculating the

definite integral more easily, without calculating the limit of a sum.

(iii) The crucial operation in evaluating a definite integral is that of finding a function

whose derivative is equal to the integrand. This strengthens the relationship

between differentiation and integration.

(iv) In ( )
b

a
f x dx∫ , the function f needs to be well defined and continuous in [a, b].

For instance, the consideration of definite integral 

1
3 2 2

2
( –1)x x dx

−∫  is erroneous

since the function f expressed by f (x) = 

1

2 2( –1)x x  is not defined in a portion

– 1 < x < 1 of the closed interval [– 2, 3].

Steps for calculating ( )
b

a
f x dx∫ .

(i) Find the indefinite integral ( )f x dx∫ . Let this be F(x). There is no need to keep

integration constant C because if we consider F(x) + C instead of F(x), we get

( ) [F ( ) C] [F( ) C] – [F( ) C] F( ) – F( )
b b

a
a

f x dx x b a b a= + = + + =∫ .

Thus, the arbitrary constant disappears in evaluating the value of the definite

integral.

(ii) Evaluate F(b) – F(a) = [F ( )]
b
ax , which is the value of  ( )

b

a
f x dx∫ .

We now consider some examples
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Example 25 Evaluate the following integrals:

(i)
3

2

2
x dx∫ (ii)

9

34
22(30 – )

x
dx

x

∫

(iii)
2

1 ( 1) ( 2)

x dx

x x+ +∫ (iv)   34

0
sin 2 cos 2t t dt

π

∫

Solution

(i) Let 
3

2

2
I x dx= ∫ . Since 

3
2 F ( )

3

x
x dx x= =∫ ,

Therefore, by the second fundamental theorem, we get

I = 
27 8 19

F (3) – F (2) –
3 3 3

= =

(ii) Let 
9

34
22

I

(30 – )

x
dx

x

= ∫ . We first find the anti derivative of the integrand.

Put 

3

2
3

30 – . Then –
2

x t x dx dt= =  or 
2

–
3

x dx dt=

Thus,  
3 2

22

2
–

3
(30 – )

x dt
dx

t
x

=∫ ∫  = 
2 1

3 t

 
  

 = 3

2

2 1
F ( )

3
(30 – )

x

x

 
  = 
  

Therefore, by the second fundamental theorem of calculus, we have

I =

9

3

2
4

2 1
F(9) – F(4)

3
(30 – )x

 
 =  
  

=
2 1 1

3 (30 – 27) 30 – 8

 
− 

 
 = 

2 1 1 19

3 3 22 99

 − =  

(iii) Let 
2

1
I

( 1) ( 2)

x dx

x x
=

+ +∫
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Using partial fraction, we get  
–1 2

( 1) ( 2) 1 2

x

x x x x
= +

+ + + +

So
( 1) ( 2)

x dx

x x+ +∫  = – log 1 2log 2 F( )x x x+ + + =

Therefore, by the second fundamental theorem of calculus, we have

I = F(2) – F(1) = [– log 3 + 2 log 4] – [– log 2 + 2 log 3]

= – 3 log 3 + log 2 + 2 log 4 = 
32

log
27

 
 
 

(iv) Let 
34

0
I sin 2 cos 2t t dt

π

= ∫ . Consider 
3

sin 2 cos2∫ t t dt

Put sin 2t = u so that 2 cos 2t dt = du or cos 2t dt = 
1

2
 du

So
3

sin 2 cos2∫ t t dt =
31

2
u du∫

=
4 41 1

[ ] sin 2 F ( ) say
8 8

u t t= =

Therefore, by the second fundamental theorem of integral calculus

I =
4 41 1

F ( ) – F (0) [sin – sin 0]
4 8 2 8

π π
= =

EXERCISE 7.8

Evaluate the definite integrals in Exercises 1 to 20.

1.
1

1
( 1)x dx

−
+∫ 2.

3

2

1
dx

x∫ 3.
2

3 2

1
(4 – 5 6 9)x x x dx+ +∫

4. sin 2
0

4
x dx

π

∫ 5. cos 2
0

2
x dx

π

∫ 6.
5

4

x
e dx∫ 7.

4

0
tan x dx

π

∫

8.
4

6

cosec x dx

π

π∫ 9.
1

0 21 –

dx

x
∫ 10.

1

201

dx

x+∫ 11.
3

22 1

dx

x −∫
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12. 22

0
cos x dx

π

∫ 13.
3

22 1

x dx

x +∫ 14.
1

20

2 3

5 1

x
dx

x

+

+∫ 15.
21

0

x
x e dx∫

16.

2
2

21

5

4 3

x

x x+ +∫ 17.
2 34

0
(2sec 2)x x dx

π

+ +∫ 18.
2 2

0
(sin – cos )

2 2

x x
dx

π

∫

19.
2

20

6 3

4

x
dx

x

+

+∫ 20.
1

0
( sin )

4

x x
x e dx

π
+∫

Choose the correct answer in Exercises 21 and 22.

21.
3

21 1

dx

x+∫  equals

(A)
3

π
(B)

2

3

π
(C)

6

π
(D)

12

π

22.

2

3

20 4 9

dx

x+∫  equals

(A)
6

π
(B)

12

π
(C)

24

π
(D)

4

π

7.9  Evaluation of Definite Integrals by Substitution

In the previous sections, we have discussed several methods for finding the indefinite

integral. One of the important methods for finding the indefinite integral is the method

of substitution.

To evaluate ( )
b

a
f x dx∫ , by substitution, the steps could be as follows:

1. Consider the integral without limits and substitute, y = f (x) or x = g(y) to reduce

the given integral to a known form.

2. Integrate the new integrand with respect to the new variable without mentioning

the constant of integration.

3. Resubstitute for the new variable and write the answer in terms of the original

variable.

4. Find the values of answers obtained in (3) at the given limits of integral and find

the difference of the values at the upper and lower limits.
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ANote In order to quicken this method, we can proceed as follows: After

performing steps 1, and 2, there is no need of step 3. Here, the integral will be kept

in the new variable itself, and the limits of the integral will accordingly be changed,

so that we can perform the last step.

Let us illustrate this by examples.

Example 26 Evaluate 
1

4 5

1
5 1x x dx

−
+∫ .

Solution Put  t = x5 + 1, then dt = 5x4 dx.

Therefore,
4 55 1x x dx+∫  = t dt∫  = 

3

2
2

3
t  = 

3

5 2
2

( 1)
3

x +

Hence,
1 4 5

1
5 1x x dx

−
+∫  =

1
3

5 2

– 1

2
( 1)

3
x

 
+ 

  

= ( )
3 3

5 52 2
2

(1 1) – (– 1) 1
3

 
+ + 

  

=

3 3

2 2
2

2 0
3

 
− 

  
 = 

2 4 2
(2 2)

3 3
=

Alternatively, first we transform the integral and then evaluate the transformed integral

with new limits.

Let t = x5 + 1. Then dt = 5 x4 dx.

Note that, when x = – 1, t = 0 and when x = 1, t = 2
Thus,  as x varies from – 1 to 1, t varies from 0 to 2

Therefore
1

4 5

1
5 1x x dx

−
+∫  =

2

0
t dt∫

=

2
3 3 3

2 2 2

0

2 2
2 – 0

3 3
t
   

=   
      

 = 
2 4 2

(2 2)
3 3

=

Example 27 Evaluate 
– 1

1

20

tan

1

x
dx

x+∫
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Solution Let t = tan – 1x, then 
2

1

1
dt dx

x
=

+
. The new limits are, when x = 0, t = 0 and

when x = 1, 
4

t
π

= . Thus, as x varies from 0 to 1, t varies from 0 to 
4

π
.

Therefore

–1
1

20

tan

1

x
dx

x+∫ =

2 4
4

0
0

2

t
t dt

π
π

 
 
 

∫  = 

2 21
– 0

2 16 32

 π π
= 

 

EXERCISE 7.9

Evaluate the integrals in Exercises 1 to 8 using substitution.

1.
1

20 1

x
dx

x +∫ 2. 52

0
sin cos d

π

φ φ φ∫ 3.
1 – 1

20

2
sin

1

x
dx

x

 
 + 

∫

4.
2

0
2x x +∫  (Put x + 2 = t2) 5. 2

20

sin

1 cos

x
dx

x

π

+∫

6.
2

20 4 –

dx

x x+∫ 7.
1

21 2 5

dx

x x− + +∫ 8.
2 2

21

1 1
–

2

x
e dx

x x

 
 
 

∫
Choose the correct answer in Exercises 9 and 10.

9. The value of the integral 

1

3 31

1 4

3

( )x x
dx

x

−
∫  is

(A) 6 (B) 0 (C) 3 (D) 4

10. If f (x) = 
0

sin
x

t t dt∫ , then f ′(x) is

(A) cosx + x sin x (B) x sinx

(C) x cosx (D) sinx + x cosx

7.10  Some Properties of Definite Integrals

We list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more easily.

P
0 
: ( ) ( )

b b

a a
f x dx f t dt=∫ ∫

P
1 
: ( ) – ( )

b a

a b
f x dx f x dx=∫ ∫ . In particular, ( ) 0

a

a
f x dx =∫

P
2
 : ( ) ( ) ( )

b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫
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P
3
 : ( ) ( )

b b

a a
f x dx f a b x dx= + −∫ ∫

P
4
 :

0 0
( ) ( )

a a

f x dx f a x dx= −∫ ∫
(Note that P

4
 is a particular case of P

3
)

P
5
 :

2

0 0 0
( ) ( ) (2 )

a a a

f x dx f x dx f a x dx= + −∫ ∫ ∫

P
6
 :

2

0 0
( ) 2 ( ) , if (2 ) ( )

a a

f x dx f x dx f a x f x= − =∫ ∫   and

                 0 if f (2a – x) = – f (x)

P
7
 : (i)  

0
( ) 2 ( )

a a

a
f x dx f x dx

−
=∫ ∫ , if f is an even function, i.e., if f (– x) = f (x).

(ii)  ( ) 0
a

a
f x dx

−
=∫ , if f is an odd function, i.e., if f (– x) = – f (x).

We give the proofs of these properties one by one.

Proof of P
0
 It follows directly by making the substitution x = t.

Proof of P
1
 Let F be anti derivative of f. Then, by the second fundamental theorem of

calculus, we have ( ) F ( ) – F ( ) – [F ( ) F ( )] ( )
b a

a b
f x dx b a a b f x dx= = − = −∫ ∫

Here, we observe that, if a = b, then ( ) 0
a

a
f x dx =∫ .

Proof of P
2
 Let F be anti derivative of f. Then

( )
b

a
f x dx∫  = F(b) – F(a) ... (1)

( )
c

a
f x dx∫  = F(c) – F(a) ... (2)

and ( )
b

c
f x dx∫  = F(b) – F(c) ... (3)

Adding (2) and (3), we get ( ) ( ) F( ) – F( ) ( )
c b b

a c a
f x dx f x dx b a f x dx+ = =∫ ∫ ∫

This proves the property P
2
.

Proof of P
3
  Let t = a + b – x. Then dt = – dx. When x = a, t = b and when x = b, t = a.

Therefore

( )
b

a
f x dx∫  = ( – )

a

b
f a b t dt− +∫
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= ( – )
b

a
f a b t dt+∫  (by P

1
)

= ( – )
b

a
f a b x+∫ dx by P

0

Proof of P
4
 Put t = a – x. Then dt = – dx. When x = 0, t = a and when x = a, t = 0. Now

proceed as in P
3
.

Proof of P
5
 Using P

2
, we have 

2 2

0 0
( ) ( ) ( )

a a a

a
f x dx f x dx f x dx= +∫ ∫ ∫ .

Let t = 2a – x in the second integral on the right hand side. Then
dt = – dx. When x = a, t = a and when x = 2a, t = 0. Also x = 2a – t.

Therefore, the second integral becomes

2

( )
a

a
f x dx∫  =

0

– (2 – )
a

f a t dt∫  = 
0

(2 – )
a

f a t dt∫  = 
0

(2 – )
a

f a x dx∫

Hence
2

0
( )

a

f x dx∫  =
0 0

( ) (2 )
a a

f x dx f a x dx+ −∫ ∫

Proof of P
6
 Using P

5
, we have 

2

0 0 0
( ) ( ) (2 )

a a a

f x dx f x dx f a x dx= + −∫ ∫ ∫        ... (1)

Now, if f (2a – x) = f (x), then (1) becomes

2

0
( )

a

f x dx∫  =
0 0 0

( ) ( ) 2 ( ) ,
a a a

f x dx f x dx f x dx+ =∫ ∫ ∫
and if f (2a – x) = – f (x), then (1) becomes

2

0
( )

a

f x dx∫  =  
0 0

( ) ( ) 0
a a

f x dx f x dx− =∫ ∫
Proof of P

7
 Using P

2
, we have

( )
a

a
f x dx

−∫  =
0

0
( ) ( )

a

a
f x dx f x dx

−
+∫ ∫ . Then

Let t = – x in the first integral on the right hand side.

dt = – dx. When x = – a, t = a and when

x = 0, t = 0. Also x = – t.

Therefore ( )
a

a
f x dx

−∫  =
0

0
– (– ) ( )

a

a
f t dt f x dx+∫ ∫

=
0 0

(– ) ( )
a a

f x dx f x dx+∫ ∫        (by P
0
)  ... (1)
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(i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes

0 0 0
( ) ( ) ( ) 2 ( )

a a a a

a
f x dx f x dx f x dx f x dx

−
= + =∫ ∫ ∫ ∫

(ii) If f is an odd function, then f (–x) = – f (x) and so (1) becomes

0 0
( ) ( ) ( ) 0

a a a

a
f x dx f x dx f x dx

−
= − + =∫ ∫ ∫

Example 28 Evaluate 
2 3

1
–x x dx

−∫

Solution We note that x3 – x ≥ 0 on [– 1, 0] and x3 – x ≤ 0 on [0, 1] and that

x3 – x ≥ 0 on [1, 2]. So by P
2
 we write

2 3

1
–x x dx

−∫  =
0 1 23 3 3

1 0 1
( – ) – ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=
0 1 23 3 3

1 0 1
( – ) ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=

0 1 2
4 2 2 4 4 2

– 1 0 1

– – –
4 2 2 4 4 2

x x x x x x     
+ +     

     

= ( )1 1 1 1 1 1
– – – 4 – 2 – –

4 2 2 4 4 2

     + +     
     

=
1 1 1 1 1 1

– 2
4 2 2 4 4 2

+ + − + − +  = 
3 3 11

2
2 4 4

− + =

Example 29 Evaluate 
24

–

4

sin x dx

π

π∫

Solution We observe that sin2 x is an even function. Therefore, by P
7
 (i), we get

24

–

4

sin x dx

π

π∫  =
24

0
2 sin x dx

π

∫

= 4

0

(1 cos 2 )
2

2

x
dx

π −
∫  = 4

0
(1 cos 2 )x dx

π

−∫
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=
4

0

1
– sin 2

2
x x

π

 
  

 = 
1 1

– sin – 0 –
4 2 2 4 2

π π π  = 
 

Example 30 Evaluate 
20

sin

1 cos

x x
dx

x

π

+∫

Solution Let I = 20

sin

1 cos

x x
dx

x

π

+∫ . Then, by P
4
, we have

I =  20

( ) sin ( )

1 cos ( )

x x dx

x

π π − π −

+ π −∫

= 20

( ) sin

1 cos

x x dx

x

π π −

+∫  = 
20

sin
I

1 cos

x dx

x

π
π −

+∫

or 2 I = π
π sin

cos

x dx

x1
20 +∫

or I = 20

sin

2 1 cos

x dx

x

ππ

+∫

Put cos x = t so that – sin x dx = dt. When x = 0, t = 1 and when x = π, t = – 1.

Therefore, (by P
1
) we get

I =
1

21

–

2 1

dt

t

−π

+∫ = 
1

212 1

dt

t−

π

+∫

=
1

20 1

dt

t
π

+∫  (by P
7
,
 2

1
since

1 t+
 is even function)

=

2
1

– 1 – 1 1

0
tan tan 1 – tan 0 – 0

4 4
t

− π π    π = π = π =      

Example 31 Evaluate 
1 5 4

1
sin cosx x dx

−∫

Solution Let I = 
1

5 4

1
sin cosx x dx

−∫ . Let f(x) = sin5 x cos4 x. Then

f (– x) = sin5 (– x) cos4 (– x) = – sin5 x cos4 x = – f (x), i.e., f is an odd function.

Therefore, by P
7
 (ii), I = 0
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Example 32 Evaluate 
4

2

4 40

sin

sin cos

x
dx

x x

π

+∫

Solution Let I = 
4

2

4 40

sin

sin cos

x
dx

x x

π

+∫ ... (1)

Then, by P
4

I =

4

2

0 4 4

sin ( )
2

sin ( ) cos ( )
2 2

x

dx

x x

π
π

−

π π
− + −

∫  = 

4
2

4 40

cos

cos sin

x
dx

x x

π

+∫                    ... (2)

Adding (1) and (2), we get

2I =
4 4

22 2

4 40 0 0

sin cos
[ ]

2sin cos

x x
dx dx x

x x

ππ π
+ π

= = =
+∫ ∫

Hence I =
4

π

Example 33 Evaluate 
3

6
1 tan

dx

x

π

π +∫

Solution  Let I = 
3 3

6 6

cos

1 tan cos sin

x dxdx

x x x

π π

π π
=

+ +∫ ∫ ... (1)

Then, by P
3

I =
3

6

cos
3 6

cos sin
3 6 3 6

x dx

x x

π

π

π π + − 
 

π π π π   + − + + −   
   

∫

=
3

6

sin

sin cos

x
dx

x x

π

π +∫ ... (2)

Adding (1) and (2), we get

2I = [ ]3 3

6 6
3 6 6

dx x

π π

π π

π π π
= = − =∫ . Hence I

12

π
=
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Example 34 Evaluate 2

0
log sin x dx

π

∫

Solution Let I = 2

0
log sin x dx

π

∫
Then, by P

4

I = 2 2

0 0
log sin log cos

2
x dx x dx

π π
π − = 

 
∫ ∫

Adding the two values of I, we get

2I = ( )2

0
log sin logcosx x dx

π

+∫

= ( )2

0
log sin cos log 2 log 2x x dx

π

+ −∫ (by adding and subtracting log2)

= 2 2

0 0
log sin 2 log 2x dx dx

π π

−∫ ∫ (Why?)

Put 2x = t in the first integral. Then 2 dx = dt, when x = 0, t = 0 and when 
2

x
π

= ,

t = π.

Therefore 2I =
0

1
log sin log 2

2 2
t dt

π π
−∫

=
2

0

2
log sin log 2

2 2
t dt

π
π

−∫  [by P
6
 as sin (π – t) = sin t)

= 2

0
log sin log 2

2
x dx

π
π

−∫  (by changing variable t to x)

= I log 2
2

π
−

Hence
2

0
log sin x dx

π

∫  =
–

log 2
2

π
.
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EXERCISE 7.10

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

1. 22

0
cos x dx

π

∫ 2.
2

0

sin

sin cos

x
dx

x x

π

+∫ 3.

3

2
2

3 30

2 2

sin

sin cos

x dx

x x

π

+
∫

4.

5
2

5 50

cos

sin cos

x dx

x x

π

+∫ 5.
5

5
| 2 |x dx

−
+∫ 6.

8

2
5x dx−∫

7.
1

0
(1 )n

x x dx−∫ 8. 4

0
log (1 tan )x dx

π

+∫ 9.
2

0
2x x dx−∫

10.
2

0
(2log sin log sin 2 )x x dx

π

−∫ 11.
22

–

2

sin x dx

π

π∫

12.
0 1 sin

x dx

x

π

+∫ 13.
72

–

2

sin x dx

π

π∫ 14.
2 5

0
cos x dx

π

∫

15. 2

0

sin cos

1 sin cos

x x
dx

x x

π
−

+∫ 16.
0

log (1 cos )x dx
π

+∫ 17.
0

a x
dx

x a x+ −∫

18.
4

0
1x dx−∫

19. Show that 
0 0

( ) ( ) 2 ( )
a a

f x g x dx f x dx=∫ ∫ , if f and g are defined as f(x) = f (a – x)

and g(x) + g(a – x) = 4

Choose the correct answer in Exercises 20 and 21.

20. The value of 3 52

2

( cos tan 1)x x x x dx

π

−π
+ + +∫  is

(A) 0 (B) 2 (C) π (D) 1

21. The value of 2

0

4 3 sin
log

4 3 cos

x
dx

x

π
 +
 

+ 
∫  is

(A) 2 (B)
3

4
(C) 0 (D) –2
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Miscellaneous Examples

Example 35 Find cos 6 1 sin 6x x dx+∫
Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx

Therefore

1

2
1

cos 6 1 sin 6
6

x x dx t dt+ =∫ ∫

=

3 3

2 2
1 2 1

( ) C = (1 sin 6 ) C
6 3 9

t x× + + +

Example 36 Find 

1

4 4

5

( )x x
dx

x

−
∫

Solution We have 

1
1

4
4 4 3

5 4

1
(1 )

( )x x xdx dx
x x

−
−

=∫ ∫

Put 
– 3

3 4

1 3
1 1 – , so thatx t dx dt

x x
− = = =

Therefore 

1
14 4
4

5

( ) 1

3

x x
dx t dt

x

−
=∫ ∫  = 

5
5

4
4

3

1 4 4 1
C = 1 C

3 5 15
t

x

 × + − + 
 

Example 37 Find 

4

2
( 1) ( 1)

x dx

x x− +∫

Solution We have

4

2
( 1)( 1)

x

x x− +
 = 3 2

1
( 1)

1
x

x x x
+ +

− + −

= 2

1
( 1)

( 1) ( 1)
x

x x
+ +

− +
... (1)

Now express 2

1

( 1)( 1)x x− +
 = 2

A B C

( 1) ( 1)

x

x x

+
+

− +
... (2)
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So 1 = A (x2 + 1) + (Bx + C) (x – 1)

= (A + B) x2 + (C – B) x + A – C

Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1,

which give 
1 1

A , B C –
2 2

= = = . Substituting values of A, B and C in (2), we get

2

1

( 1) ( 1)x x− +
 = 2 2

1 1 1

2( 1) 2 ( 1) 2( 1)

x

x x x
− −

− + +
... (3)

Again, substituting (3) in (1), we have

4

2
( 1) ( 1)

x

x x x− + +
 = 2 2

1 1 1
( 1)

2( 1) 2 ( 1) 2( 1)

x
x

x x x
+ + − −

− + +

Therefore

4 2
2 – 1

2

1 1 1
log 1 – log ( 1) – tan C

2 2 4 2( 1) ( 1)

x x
dx x x x x

x x x
= + + − + +

− + +∫

Example 38 Find 2

1
log (log )

(log )
x dx

x

 
+ 

 
∫

Solution Let 
2

1
I log (log )

(log )
x dx

x

 
= + 

 
∫

= 2

1
log (log )

(log )
x dx dx

x
+∫ ∫

In the first integral, let us take 1 as the second function. Then integrating it by

parts, we get

I = 2

1
log (log )

log (log )

dx
x x x dx

x x x
− +∫ ∫

= 2
log (log )

log (log )

dx dx
x x

x x
− +∫ ∫ ... (1)

Again, consider 
log

dx

x∫ , take 1 as the second function and integrate it by parts,

we have 2

1 1
– –

log log (log )

dx x
x dx

x x xx

   =    
    

∫ ∫         ... (2)
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Putting (2) in (1), we get

2 2
I log (log )

log (log ) (log )

x dx dx
x x

x x x
= − − +∫ ∫  = log (log ) C

log

x
x x

x
− +

Example 39 Find cot tanx x dx + ∫
Solution We have

I = cot tanx x dx + ∫ tan (1 cot )x x dx= +∫
Put tan x = t2, so that sec2 x dx = 2t dt

or dx =  
4

2

1

t dt

t+

Then I = 2 4

1 2
1

(1 )

t
t dt

t t

 
+ 

+ 
∫

=

2 2 2

4 2
2

2

1 1
1 1

( 1)
2 = 2 = 2

11 1
2

dt dt
t t t

dt
t

t t
t t

   + +   +    
 +  + − +      

∫ ∫ ∫

Put 
1

t
t

−  = y, so that 2

1
1

t

 + 
 

 dt = dy. Then

I =

( )
– 1 – 1

2
2

1

2 2 tan C = 2 tan C
2 22

t
dy y t

y

 − 
 = + +

+
∫

=

2
– 1 – 11 tan 1

2 tan C = 2 tan C
2 2 tan

t x

t x

 − − 
+ +       

Example 40 Find 
4

sin 2 cos 2

9 – cos (2 )

x x dx

x
∫

Solution Let 
4

sin 2 cos 2
I

9 – cos 2

x x
dx

x
= ∫
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Put cos2 (2x) = t so that 4 sin 2x cos 2x dx = – dt

Therefore –1 1 2

2

1 1 1 1
I – – sin C sin cos 2 C

4 4 3 4 39 –

dt t
x

t

−   = = + = − +      
∫

Example 41 Evaluate 

3

2

1
sin ( )x x dx

−
π∫

Solution Here f (x) = | x sin πx | = 

sin for 1 1

3
sin for1

2

x x x

x x x

π − ≤ ≤



− π ≤ ≤

Therefore

3

2

1
| sin |x x dx

−
π∫  =

3
1

2

1 1
sin sinx x dx x x dx

−
π + − π∫ ∫

=

3
1

2

1 1
sin sinx x dx x x dx

−
π − π∫ ∫

Integrating both integrals on righthand side, we get

3

2

1
| sin |x x dx

−
π∫  =

= 2 2

2 1 1 3 1 − − − = + π π ππ π 

Example 42 Evaluate 2 2 2 20 cos sin

x dx

a x b x

π

+∫

Solution Let I = 2 2 2 2 2 2 2 20 0

( )

cos sin cos ( ) sin ( )

x dx x dx

a x b x a x b x

π π π −
=

+ π − + π −∫ ∫ (using P
4
)

=
2 2 2 2 2 2 2 20 0cos sin cos sin

dx x dx

a x b x a x b x

π π
π −

+ +∫ ∫

= 2 2 2 20
I

cos sin

dx

a x b x

π
π −

+∫

Thus 2I = 2 2 2 20 cos sin

dx

a x b x

π
π

+∫
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or I =
2

2 2 2 2 2 2 2 20 0
2

2 2cos sin cos sin

dx dx

a x b x a x b x

π
ππ π

= ⋅
+ +∫ ∫ (using P

6
)

=
24

2 2 2 2 2 2 2 2
0

4

cos sin cos sin

ππ

π

 
π + 

+ +  
∫ ∫

dx dx

a x b x a x b x

= 

2 2
24

2 2 2 2 2 2
0

4

sec cosec

tan cot

ππ

π

 
π + 

+ +  
∫ ∫

x dx x dx

a b x a x b

= ( )
01

2 2 2 2 2 2
0 1

tan t cot
 π − = = + + 
∫ ∫

dt du
put x and x u

a b t a u b

= 

1 0

–1 –1

0 1

tan – tan
π π   
      

bt au

ab a ab b
 =  

–1 –1
tan tan

π  +  

b a

ab a b
= 

2

2

π
ab

Miscellaneous Exercise on Chapter 7

Integrate the functions in Exercises 1 to 23.

1. 3

1

x x−
2.

1

x a x b+ + +
3.

2

1

x ax x−
 [Hint: Put x = 

a

t
]

4. 3

2 4 4

1

( 1)x x +

5. 11

32

1

x x+

      [Hint:
11 1 1

32 3 6

1 1

1x x x x

=
 

+ + 
 
 

, put x = t6]

6. 2

5

( 1) ( 9)

x

x x+ +
7.

sin

sin ( )

x

x a−
8.

5 log 4 log

3 log 2 log

x x

x x

e e

e e

−

−

9.
2

cos

4 sin

x

x−
10.

8 8

2 2

sin cos

1 2sin cos

x

x x

−

−
11.

1

cos ( ) cos ( )x a x b+ +

12.

3

81

x

x−
13.

(1 ) (2 )

x

x x

e

e e+ +
14. 2 2

1

( 1) ( 4)x x+ +

15. cos3 x elog sinx 16. e3 logx (x4 + 1)– 1 17.  f ′ (ax + b) [f (ax + b)]n
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18. 3

1

sin sin ( )x x + α 19.
1

1

x

x

−

+
20.

2 sin 2

1 cos 2

xx
e

x

+
+

21.

2

2

1

( 1) ( 2)

x x

x x

+ +

+ +
22.

– 1 1
tan

1

x

x

−
+

23.

2 2

4

1 log ( 1) 2 logx x x

x

 + + − 

Evaluate the definite integrals in Exercises 24 to 31.

24.
2

1 sin

1 cos

π

π

− 
 − 

∫
x x

e dx
x

25. 4

4 40

sin cos

cos sin

x x
dx

x x

π

+∫ 26.
2

2

2 20

cos

cos 4 sin

x dx

x x

π

+∫

27. 3

6

sin cos

sin 2

x x
dx

x

π

π

+
∫ 28.

1

0 1

dx

x x+ −∫ 29.
4

0

sin cos

9 16 sin 2

x x
dx

x

π
+

+∫

30.
12

0
sin 2 tan (sin )x x dx

π
−

∫

31.
4

1
[| 1| | 2 | | 3 |]x x x dx− + − + −∫

Prove the following (Exercises 32 to 37)

32.
3

21

2 2
log

3 3( 1)

dx

x x
= +

+∫ 33.
1

0
1

x
x e dx =∫

34.
1

17 4

1
cos 0x x dx

−
=∫ 35. 32

0

2
sin

3
x dx

π

=∫

36.
34

0
2 tan 1 log2x dx

π

= −∫ 37.
1 1

0
sin 1

2
x dx

− π
= −∫

Choose the correct answers in Exercises 38 to 40

38.
x x

dx

e e
−+∫  is equal to

(A) tan–1 (ex) + C (B) tan–1 (e–x) + C

(C) log (ex – e–x) + C (D) log (ex + e–x) + C

39.
2

cos 2

(sin cos )

x
dx

x x+∫  is equal to
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(A)
–1

C
sin cosx x

+
+

(B) log |sin cos | Cx x+ +

(C) log |sin cos | Cx x− + (D) 2

1

(sin cos )+x x

40. If f (a + b – x) = f (x), then ( )
b

a
x f x dx∫  is equal to

(A) ( )
2

b

a

a b
f b x dx

+
−∫ (B) ( )

2

b

a

a b
f b x dx

+
+∫

(C) ( )
2

b

a

b a
f x dx

−
∫ (D) ( )

2

b

a

a b
f x dx

+
∫

Summary

® Integration is the inverse process of differentiation. In the differential calculus,

we are given a function and we have to find the derivative or differential of

this function, but in the integral calculus, we are to find a function whose

differential is given. Thus, integration is a process which is the inverse of

differentiation.

Let F( ) ( )
d

x f x
dx

= . Then we write ( ) F ( ) Cf x dx x= +∫ . These integrals

are called indefinite integrals or general integrals, C is called constant of

integration. All these integrals differ by a constant.

® Some properties of indefinite integrals are as follows:

1. [ ( ) ( )] ( ) ( )f x g x dx f x dx g x dx+ = +∫ ∫ ∫

2. For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫
More generally, if f

1
, f

2
, f

3
, ... , f

n
 are functions and k

1
, k

2
, ... ,k

n
 are real

numbers. Then

1 1 2 2[ ( ) ( ) ... ( )]n nk f x k f x k f x dx+ + +∫

= 1 1 2 2( ) ( ) ... ( )n nk f x dx k f x dx k f x dx+ + +∫ ∫ ∫
® Some standard integrals

(i)

1

C
1

n
n x

x dx
n

+

= +
+∫ , n ≠ – 1. Particularly, Cdx x= +∫
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(ii) cos sin Cx dx x= +∫ (iii) sin – cos Cx dx x= +∫

(iv)
2

sec tan Cx dx x= +∫ (v)
2

cosec – cot Cx dx x= +∫

(vi) sec tan sec Cx x dx x= +∫

(vii) cosec cot – cosec Cx x dx x= +∫ (viii)
1

2
sin C

1

dx
x

x

−= +
−

∫

(ix)
1

2
cos C

1

dx
x

x

−= − +
−

∫ (x)
1

2
tan C

1

dx
x

x

−= +
+∫

(xi)
1

2
cot C

1

dx
x

x

−= − +
+∫ (xii) C

x x
e dx e= +∫

(xiii) C
log

x
x a

a dx
a

= +∫ (xiv)
1

log | | Cdx x
x

= +∫

® Integration by partial fractions

Recall that a rational function is ratio of two polynomials of the form 
P( )

Q( )

x

x
,

where P(x) and Q (x) are polynomials in x and Q (x) ≠ 0. If degree of the

polynomial P (x) is greater than the degree of the polynomial Q (x), then we

may divide P (x) by Q (x) so that 1P ( )P( )
T ( )

Q( ) Q( )

xx
x

x x
= + , where T(x) is a

polynomial in x and degree of P
1
(x) is less than the degree of Q(x). T(x)

being polynomial can be easily integrated. 1P ( )

Q( )

x

x
 can be integrated by

expressing 
1P ( )

Q( )

x

x
 as the sum of partial fractions of the following type:

1.
( ) ( )

px q

x a x b

+

− −
=

A B

x a x b
+

− −
, a ≠ b

2. 2
( )

px q

x a

+

− = 2

A B

( )x a x a
+

− −
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3.

2

( ) ( ) ( )

px qx r

x a x b x c

+ +

− − − =
A B C

x a x b x c
+ +

− − −

4.

2

2
( ) ( )

px qx r

x a x b

+ +

− −
= 2

A B C

( )x a x bx a
+ +

− −−

5.

2

2
( ) ( )

px qx r

x a x bx c

+ +

− + +
=

2

A B + Cx

x a x bx c
+

− + +

where x2 + bx + c can not be factorised further.

® Integration by substitution

A change in the variable of integration often reduces an integral to one of the

fundamental integrals. The method in which we change the variable to some

other variable is called the method of substitution. When the integrand involves

some trigonometric functions, we use some well known identities to find the

integrals. Using substitution technique, we obtain the following standard

integrals.

(i) tan log sec Cx dx x= +∫ (ii) cot log sin Cx dx x= +∫

(iii) sec log sec tan Cx dx x x= + +∫

(iv) cosec log cosec cot Cx dx x x= − +∫
® Integrals of some special functions

(i) 2 2

1
log C

2

dx x a

a x ax a

−
= +

+−∫

(ii) 2 2

1
log C

2

dx a x

a a xa x

+
= +

−−∫ (iii)
1

2 2

1
tan C

dx x

a ax a

−= +
+∫

(iv) 2 2

2 2
log C

dx
x x a

x a
= + − +

−
∫ (v)

1

2 2
sin C

dx x

aa x

−= +
−

∫

(vi)
2 2

2 2
log | | C

dx
x x a

x a
= + + +

+
∫

® Integration by parts

For given functions f
1
 and  f

2
, we have
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, i.e., the

integral of the product of two functions = first function × integral of the

second function – integral of {differential coefficient of the first function ×

integral of the second function}. Care must be taken in choosing the first

function and the second function. Obviously, we must take that function as

the second function whose integral is well known to us.

® [ ( ) ( )] ( ) C
x x

e f x f x dx e f x dx′+ = +∫ ∫
® Some special types of integrals

(i)

2
2 2 2 2 2 2

log C
2 2

x a
x a dx x a x x a− = − − + − +∫

(ii)

2
2 2 2 2 2 2

log C
2 2

x a
x a dx x a x x a+ = + + + + +∫

(iii)

2
2 2 2 2 1

sin C
2 2

x a x
a x dx a x

a

−− = − + +∫

(iv) Integrals of the types 
2 2

or
dx dx

ax bx c ax bx c+ + + +
∫ ∫ can be

transformed into standard form by expressing

ax2 + bx + c = 

2 2
2

22 4

b c b c b
a x x a x

a a a a a

     + + = + + −    
      

(v) Integrals of the types 2 2
or

px q dx px q dx

ax bx c ax bx c

+ +

+ + + +
∫ ∫ can be

transformed into standard form by expressing

2
A ( ) B A (2 ) B

d
px q ax bx c ax b

dx
+ = + + + = + + , where A and B are

determined by comparing coefficients on both sides.

® We have defined ( )
b

a
f x dx∫  as the area of the region bounded by the curve

y = f (x), a ≤ x ≤ b, the x-axis and the ordinates x = a and x = b. Let x be a
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given point in [a, b]. Then ( )
x

a
f x dx∫  represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral

Calculus.

® First fundamental theorem of integral calculus

Let the area function be defined by A(x) = ( )
x

a
f x dx∫  for all x ≥ a, where

the function f is assumed to be continuous on [a, b]. Then A′ (x) = f (x) for all

x ∈ [a, b].

® Second fundamental theorem of integral calculus

Let f be a continuous function of x defined on the closed interval [a, b] and

let F be another function such that F( ) ( )
d

x f x
dx

=  for all x in the domain of

f, then [ ]( ) F( ) C F ( ) F ( )
b b

aa
f x dx x b a= + = −∫ .

This is called the definite integral of f over the range [a, b], where a and b

are called the limits of integration, a being the lower limit and b the

upper limit.

—vvvvv—
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